Lectures $18 \& 19$
Plan:

1) brietty recap matroid polytope
2) Matroid intersection activity
3) largest common independents subset
Matroid intersection

- Matroids very nice $6 / c$ grady works. given $c: E \rightarrow \mathbb{R}, \max _{S \in I} C(S)=\sum_{e \in S}(C)$
- But greedy doesit work for lots of problems,
e.9. 1 max matching, Δ max stable set in graph.
\Rightarrow matroids very limited!

$$
\left|2^{E}\right|=2^{|E|}
$$

F...A. A. Matrood intersection much
power et. richer. $\{1,2\}\{\{1,23$
$2^{E}=$ set of sallets of E es. $\left.2^{\{1,2\}}=\{1\}, 22,\right\}$
Def of $M_{1}=\left(E, I_{1}\right), M_{2}=\left(E_{1} I_{2}\right)$ matroids on common ground set $E_{\text {, }}$ their intersection is just

$$
I_{1} \cap I_{2} \subseteq 2^{E}, \quad\left(I_{1}, I_{2} \subseteq 2^{E}\right)
$$

ie. the sets indep. in $M_{1} \& M_{2}$.
E.g. $E=\{1,2,3\}$

$+\phi$

$$
I_{2}=
$$

$$
I_{1} \cap I_{2}=\underbrace{2}
$$

- Activity : lots of examples?
- Will show how to find largest common independent set efficiently! (Next time, probably).
e.g. largest bipartite matching

$$
\max _{S \in I_{1} \cap I_{2}}|S|
$$

fargest Common indep. Aet

- we give a min-max characterzation i.e. "dua lity" result for LC.IS.
- allous us to pron:
- Let M_{1}, M_{2} be matroisds w/ rank functions $r_{1} r_{2}$
- Let $S \in I_{1} \cap I_{2}$ be coman indep. set, $u \subseteq E$ any suluser of groud set.
Then $|s|=|s \cap u|+|s| u \mid$
- mak over S, min wer U:

$$
{\max |S| \leq \min _{u \leq E} r_{1}(u)+r_{2}(E \mid u) \text {. }}_{S \in I_{1} \cap I_{2}}
$$

"strony duality": $4^{\text {th }}$ pset proldem
Theoren: (Edmonds) s helps build

$$
\max _{S \in I_{1} \cap I_{2}}|S|=\min _{u \subseteq E} r_{1}(U)+r_{2}(E \backslash U)
$$

Remark: Enough to minus over u closed for $M,($ closed $:=\operatorname{span}(u)=u)$
$-U \leftarrow \operatorname{span}_{\mu_{1}}(u)$ desert increase $R H / S$ can assume E\U closed in μ_{2}

- Same reason...
- but Nor bothat
same tine!

Egg. Special cases:

- Can show (Exercise) that orients $G-w /$ indore $\leq p(v)$ possible $\Leftrightarrow \forall S \subseteq V \quad|E(S)| \leq \sum_{v \in S} p(v)$ (as in Pret 4).
- Can show \exists colorful spain tree \Leftrightarrow delety any C colors produces $\leq c+1$ connected component.

Proof of Theorem

- proof is "prival-dual", ie. at each stop eitla increase $|S|$ or terminate \& outport u with

$$
\begin{aligned}
& |s|=r_{1}(u)+r_{2}(E \mid u) \text {. }
\end{aligned}
$$

- Uses "directed exclave graph". work up to full defriitin.
first, undireed : from one matroid $M=(E, I)$
Def Given $S \in I$, (mdireted) exchyp graph
$G_{M}(S):=$ bipartite graph, vertices $=$ group
mather example - partition S, ENS group set is
edges of graph
2 partition matroids. (y, x) ely if $S-y+x \in I$.

i.9. a linear matroid

equivalent:
(y, x) edge \Leftrightarrow
$x \notin \operatorname{span}(S-y)$.
- Arises in "matroid sampliu"",
sampling a uniffernly random base of matroid. (Anari et. al.)
- For us, useful for the following reason:

Lemma: Let $S, T \in I \quad|S|=|T|$
Then $G_{M}(S)$ has a perfect matching between S\T and TIS.
eq.

proof: Exercise (repeatedly apply exchoye ax som).
and a partial comerse.
Lemma: Let $S \in I, T \subseteq E$ sit. $|S|=|T|$.
suppose $G_{M}(S)$ has weque perfect matchin betwem SIT \& TIS.

Then $T \in I$.
proof: Let N be wing mathis.

- ordering result:

Claim. Can order

$$
\begin{aligned}
& S \backslash T=\left\{y_{1}, \ldots ., y_{k}\right\} \\
& T \backslash S=\left\{x_{1}, \ldots, x_{k}\right\}
\end{aligned}
$$

SIT TVS
so that $N=\left\{\left(y, x_{1}\right), \ldots,\left(y_{x_{1}, x_{k}}\right)\right\}$ and $\left(y_{i}, x_{j}\right) \in G_{M}(s)$ for $i<j$.

- proof is just about graphs (not matnids).
proof of cain:
- Ignore edges not beturen SIT, TIS.
- Orient N from $T \rightarrow S$
- Others $S \rightarrow T$
e.9.

SIT TVS

- Contract along edges of N.
e. 9.
\underbrace{a}_{a}
(remove loops).
- Get acyclic directed graph (else get alternation cycle in $G_{M}(s)$ w.r.t. N, contradicts uniqueness of N.
vertices of the
- Topologically order "contracted graph so that all edges points backwards. (passible b/c acyclic.).
hera

$$
\begin{aligned}
& b=z_{1} \\
& c=z_{2} \\
& a=z_{3}
\end{aligned} \quad z_{1} \ldots . z_{k} .
$$

- Let $x_{i} \in$ TVS, y \quad SSIT be the vertices we contracted to get z_{i}.
(can now forget about contracted digraph/ top. ordering).

Now, for contradictions suppose $T \notin I$.
minimal dequedentses. $y_{x} \in C$, x $x \in \operatorname{sen}(C-x)$

- then T contains a circuit C.
e. 9.

- then C;ateracts $T \backslash S$ (dee $C \subseteq S$, contradict $S \in I$).
- Let x_{i} be first element in C (ne ordain).
e. 9.

- Now well find that $x_{i} \in \operatorname{span}\left(S-y_{i}\right)$ contradicts $\left(y_{i}, x_{i}\right) \in G_{m}(S)$! (by def. of $G_{M}(S)$.).
- To show this, observe

$$
\forall x \in C-x_{i}, x \in \operatorname{span}\left(S-y_{i}\right)
$$

b/c $\left(y_{i}, x\right) K G_{M}(S)$ by ordering. (x comes oft $x_{\text {; }}$ in ordain).

$$
\Rightarrow \operatorname{Spar}\left(S-y_{i}\right) \frac{2}{} \operatorname{spar}\left(c-x_{i}\right) \not \ni x_{i} *
$$

by propertio
of span. became.
C circuit.

- now generating to directed axchang graph from two matroids $M_{1}=\left(E_{1} I_{1}\right), M_{2}=\left(E_{1} I_{2}\right)$

Def For $S \in I_{1} \cap I_{2}$, (directed) exchange graph
$D_{M_{1} M_{2}}(S):=$ - directed bipartite graph

- parts S, EIS
- (y, x) edge if $S-y+x \in I_{1}$
. (x, y) edge if $S-y+x \in I_{2}$
Pective:

here

$$
\delta-y+x \in I_{1}, \delta-y^{\prime}+x^{\prime} \in I_{2}
$$

- Note: $G_{M_{1}}(s), G_{M_{2}}(S)$ are subgraphs
\checkmark rightwardsedges leftwards edges.
- Also define:
"sources" $Z_{1}:=\{x \notin S: S+x \in I\}$
ie $S+x$ independent in M_{1}
"sinks" $Z_{2}:=\left\{x \notin S: S+x \in I_{2}\right\}$.
e. 9.

Algorithm initialize $S=\varnothing$.
$\Delta \frac{\text { Repeat: (until termination) }}{\square \text { compute }}$
\square compute $D_{m_{1}} m_{2}(s)$
D if \exists directed path from sources Z_{1} to sinks Z_{2} in $D_{m_{1} m_{2}}(S)$:
$\Delta P:=$ a shortest such path
\triangle Replace $S \leftarrow S \Delta P$
($P:=$ vertices on $p a t h$).

Delve: (i.e. no path) D return
$u=\left\{z \in E:\right.$ sinks z_{2} are reachable from z in $\}$.
Correctness: $D_{M_{1} M_{2}}(S)$.

- Claim 1: S remains in $I_{1} \cap I_{2}$
- Clan 2: $|s|=r_{1}(u)+r_{2}(E \backslash U)$ at termination.

Proof of Claim 1: want to show $S \triangle P \in I_{1} \cap I_{2}$

- Recall P shortest path; in particular no shortants eq

- Enouflto show: P has no shorstants

$$
\Rightarrow S \Delta P \in I_{1} \cap I_{2} .
$$

- We first show $S \triangle P \in I_{1}$
- To do this, define new matroid $M_{1}^{\prime}=\left(E^{\prime}, I^{\prime}\right)$ by add new element t to E, and defin
$E^{\prime}=E+t$ and $I^{\prime}=\left\{J: J-t \in I_{1}\right\}$
ie. add t \& make it "independent from everything in $E^{\prime \prime}$. $I^{\prime}=\{R, R+t: R \in I$,$\} .$
- Define M_{2}^{\prime} analogously (usingsamet) consider $D M_{1}^{\prime} M_{2}^{\prime}(S+z)$.

- Note $D_{M_{1}, M_{2}}(S+t)$ is just $D_{M_{1} M_{2}}(s)$ plop edges $t \rightarrow z_{1}, t \leftarrow z_{2}$ all
- View $G_{M_{1}}(S+t)$ a s a subgraph of $D_{M_{1}^{\prime} M_{2}^{\prime}}(S+l)$ undirected
- Observe $G_{M_{1}^{\prime}}(S+t)$ contains a fM. N between SOP th \& PIS.
eq

(include edge $t \rightarrow$ start of P \& all elopes of P starting in S).
- And N is unique by no shortcut properties. between SUPt, PS.
$C_{M_{1}^{\prime}}(s+t)$ is directed rightwards, So $N^{\prime} \neq N$ poffect matily yidds shorthil)
- Unique perfect matchof lemia $G_{M_{i}}(s)$

$$
\begin{aligned}
& \Rightarrow S \Delta P \in I_{1}^{\prime} \\
& \Rightarrow S \Delta P \in I_{1} \quad\left(\text { by } d \text { def of } M_{1}^{\prime}\right) .
\end{aligned}
$$

- To shaw $s \Delta P \in I_{2}$ instaad
fill retches in $G_{M_{2}^{\prime}}(S+t)$ useedge from last perter in P to t.

- finishes proof of Claim 1. 1.

Proof of Claim 2: ie. No $z_{i} \rightarrow z_{2}$

- Want to show at termination,

$$
|S|=r_{1}(u)+r_{2}(E \backslash u)
$$

where $u=$ everything from which some vertex of z_{2} is reachable.
e.g.

- Fuist note $z_{2} \subseteq U$ and $z_{1} \cap U=\phi$ else alop. not done.
- Enouh to show $\left.r_{1}(u)=|s \wedge u|\right\} 甘$
\& $r_{2}(E \backslash U)=|s| u \mid$
(then

$$
\begin{aligned}
|S| & =\mid \text { snu| }+\mid \text { s|u| } \\
& \left.=r_{1}(u)+r_{2}(E \mid u)\right)
\end{aligned}
$$

- Suppose $\left.r_{1}(u) \neq|S \cap u| i_{i}\right)$
- $\operatorname{snu} \subseteq u, s$ indep in $M_{1} \Rightarrow \operatorname{sind}_{\text {indpina }}$

$$
\begin{aligned}
& \Rightarrow|s n u|<r_{1}(u) . \\
& \Rightarrow \exists x \in u \backslash s \text { s. }(S n u)+x \in I_{1}
\end{aligned}
$$ exchang axiom.

- $S \in I_{2} \Rightarrow$ can add elts of Slu (repentedly to $(s \cap u)+x$ applerexchane until we obtain a set axtom. first to soutx, S...) to $\int \begin{aligned} & S+x-y \in I_{1} \\ & \text { for } y \in S \backslash U \text {, }\end{aligned}$
- But then (y, x) is in $D \mu_{1} \mu_{2}(s)$. $\Rightarrow V_{y} \in U$; contranits $y \in S \backslash M$.

- Case $r_{2}(U \mid u) \neq|s| u \mid$
similar; contradiction looks like

left as exercise.

